Vulnerability Assessment of Alberta's Highway Network Under Extreme Events

Kasturi Mahajan

Graduate Research Assistant

Univeristy of Alberta

Dr. Amy Kim Associate Professor Univeristy of Alberta

NATURAL DISASTERS AND TRANSPORTATION NETWORK

Accommodate large surges in demand to facilitate safe and efficient evacuations

Vulnerability:

System's susceptibility and operational degradation in face of threats

Transportation network

Robustness:

System's ability to continue the operation and maintain acceptable level of functionality

OBJECTIVE AND PROCESS

OBJECTIVE

- emergency situation

PROCEDURE

- Network representation using node-link system
- - Ο
 - Ο services during emergency

Understand interconnectedness of Alberta's highway system and identify communities at risk in an

Explore how network topology puts communities and highways at risk in case of emergencies

Employed topological metrics to measure network performance

<u>Topological measures</u>: measures that use nodes, links and the node-link arrangement to characterize the transportation network <u>focuses on Vulnerability</u> of transportation network Network performance was measured in terms of difficulty to vacate a community and access basic

NETWORK REPRESENTATION

STUDY REGION

- Communities in north eastern quadrant of Alberta connected to major cities in the province
- Specifically, communities towards the north and east of Edmonton
- Focus on the sparse network

COMMUNITIES

- Represented as nodes
- Communities include: hamlets, villages, cities, towns and First Nations

HIGHWAY NETWORK

- Represented as links
- Only provincial highway system

S

PERFORMANCE MEASURES

- **TOPOLOGICAL MEASURES VULNERABILITY MEASURES**
- Metrics used to measure the impact of disruption on transportation network
- Based on network topology: node-link arrangement and path lengths
- A undirected graph of the network is made and paths are calculated based on adjacency matrix

SHORTEST PATH ANALYSIS

NETWORK GRAPH

A undirected weighted graph of the network with weights equal to distance •

SHORTEST PATH ANALYSIS

- Shortest path analysis is based on Dijkstra's shortest path algorithm
- Shortest path is the minimum distance path between an origin-destination • pair

EVACUATION SCENARIO

- Origins: Communities assumed to be at risk that evacuate to nearest service cente \bullet
- Destination: Service center, a city with population>1000 that acts as provider for \bullet basic and emergency relief services.
- Communities are assumed to evacuate to service center using shortest path

NODE DEGREE

Node degree refers to the number of edges directly connected to a node. More • specifically, number of highway links connected to a community centroid node

The degree of a node is defined as,

$$D_i = \sum_{k=1}^N a_{ik}$$

D_i: Degree of node i k: any other node in the network excluding i *N: total number of nodes in the network* a_{ik} : ik element of the node adjacency matrix A.

 a_{ik} takes a value of 1 if and only if nodes *i* and *k* are directly connected with a link.

It counts the number of immediate exits available to vacate a community during • an emergency

Node Degree Results

NODE DEGREE

Node Closeness Results

NODE CLOSENESS

It measures how close is community 'i' to all service centers along the shortest path • in the network

$$C_i = \frac{1}{\sum_{k=1}^M d_{ik}}$$

 $C_i = Closeness of node i$ d_{ik} = Geodesic distance between nodes i and k *i* = *Community centroid* $k = Service \ centre$

M = Total number of service centers in the network

- Lower Node Closeness \rightarrow more remote the community in terms of service provision •
- Disconnected communities in the North have a 0 node closeness value and are the \bullet most remote
- The closeness value starts increasing as we move towards the center of the province • as the major service centers are located here

Accessibility and Remoteness Index of Australia

ACCESSIBILITY AND REMOTENESS INDEX OF AUSTRALIA

Accessibility/Remoteness Index of Australia (ARIA) : ratio of the road network distance from a community to the nearest service center to the average distance of all communities to that service center

$$ARIA_i = \sum_k \frac{d_{ik}}{\overline{d_{k\forall i}}}$$

Where, $ARIA_i = Accesibility/Remoteness Index of node i$ d_{ik} = Geodesic distance between node i and k $\overline{d_{k\forall i}} = Average \ geodesic \ distance \ of \ k \ from \ all \ i's$ *i* = *Community centroid* $k = Service \ centre$

- Higher the ARAI more remote the community \bullet
- The communities having a value of Infinity are in the extreme north and are • completely disconnected
- As we move towards Edmonton the values start decreasing as the communities start • becoming more accessible

Clearing Time Estimate Results

CLEARING TIME ESTIMATE

- <u>Clearing Time Estimate</u> is the ratio of population to the immediate number of exits \bullet out of a community
- Measure of time required to clear a neighborhood \rightarrow evacuation difficulty ullet
- The Clearing Time Estimate is defined as,

$$CTE_i = \frac{P_i}{E_i}$$

CTE_i: Clearing Time Estimate for node i *P_i* : population of node i *E_i: number of immediate exits for community* i

Communities with high population and less number of exits have a high CTE value • and are critical

Community	Population	Number of exits	CTE value
Fort McMurray	66,573	2	33,286.50
City of Cold Lake	14,961	2	7480.50

Remoteness Index Results

REMOTENESS INDEX

<u>Remoteness Index</u> for a community 'i' is the ratio of population of service center to ulletthe shortest distance from that community to the service center summed for all the service centers

$$RI_i = ln(\sum_{k=1}^{k} \frac{P_k}{d_{ik}})$$

 $RI_i = Remoteness \ Index \ of \ node \ i$ d_{ik} = Geodesic distance between node i and k $P_k = Population of node k$ *i* = *Community centroid* $k = Service \ centre \ centroid$

- Lower Remoteness Index \rightarrow more remote the community from a service center •
- The communities with value zero represent remote communities that are completely • disconnected
- These are fly in communities and have winter road access •
- The communities in Regional Municipality of Wood Buffalo have a low remoteness • index as their distance from major population centers in the province is high

CONCLUSIONS

- Northernmost communities in Alberta are only accessible by \bullet winter roads and are disconnected from the highway system
- Highway network in the Regional Municipality of Wood Buffalo is \bullet sparse and the communities are remote in terms of service provision
- Fort McMurray has the highest ratio of population to exit • capacity in the northeastern quadrant, and can face the most difficulty to evacuate
- Accessibility to services and connectivity for communities starts \bullet increasing towards the center of the province (along Highway 2) corridor)
- Finally, communities not connected or connected with only one \bullet provincial highway are the most critical

<u>Images:</u> Title page: globalnews.ca Current page: macleans.ca

Thank you!